

TVET SKILLS FOR RENEWABLE ENERGY AND GREEN HYDROGEN IN NAMIBIA

Annexure 5: Electrolyser Installation, Operation and Maintenance

Implemented by

IMPRINT

Published by the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Registered offices Bonn and Eschborn, Germany

Friedrich-Ebert-Allee 36+40 3113 Bonn, Germany Phone +49 228 44 60-0 Fax +49 228 44 60-17 66

Dag-Hammarskjöld-Weg 1-5 65760 Eschborn, Germany Phone +49 61 96 79-0 Fax +49 61 96 79-17 66

Namibia

Promotion of Technical Vocational Education and Training (ProTVET) Project 10 Rand Street, Khomasdal, Windhoek, Namibia Phone +264 61 222 447 Email jerry.beukes@giz.de www.giz.de/en/worldwide/323.html

As of 09/2025

Design Joyce Kondo Windhoek, Namibia joycekondojk.wixsite.com/mysite

Photo credits
Ndinelago Tshoombe at WVTC: pages 6, 12, 15, 20 and 23
Panduleni Michael at Daures: cover, pages 7 and 10
Rodney Seibeb at HyIron: page 3a
Samuel John at Cleanergy and HyIron: pages 3b and 22

Responsible

Sybil Ferris (GfA), Emil Spieler and Rodney Seibeb (GIZ ProTVET)

Researchers

Prof Dr Samuel John and Prof Dr Birgit Scheppat

On behalf of the German Federal Ministry for Economic Cooperation and Development (BMZ)

The opinions and recommendations expressed do not necessarily reflect the positions of the commissioning institution or the implementing agency.

CONTENTS

Acro	onyms
1. Ar	nalytical Report
1.1	Status quo – overview of existing training measures and training providers
1.2	Stakeholder Mapping and Gap Analysis
1.3	International Benchmarking
1.4	Skills Gap Analysis in the Field of Electrolyser Installation, Operation and Maintenance
2. Re	ecommendations for Training Measures in Electrolyser Installation, Operation and Maintenance 14
2.1	Brief Description of Recommended Short Courses
2.2	Recommended Upskilling Training Measures Related to the Short Courses
2.3	Short Courses: Brief Outline of Competencies Required
2.4	Potential Capacity-Building Initiatives Related to the Short Courses
2.5	Recommendations for Potential Partnerships
3. Co	onclusion and Recommendations
4 I i	terature and Documents

ACRONYMS

ATEX Atmosphere Explosibles

DC Direct Current
DI Deionised Water

DVGW German Technical and Scientific Association for Gas

and Water

EU European Union
HDF Hydrogène de France

NERA Namibia Energy Regulatory Authority

NTA Namibia Training Authority

NUST Namibia University of Science and Technology

OEM Original Equipment Manufacturer
PEM Proton Exchange Membrane
PLC Programmable Logic Controller
PPE Personal Protective Equipment

RO Reverse Osmosis

SADC Southern African Development Community
SCADA Supervisory Control and Data Acquisition
TÜV SÜD Technischer Überwachungsverein Süd

TVET Technical and Vocational Education and Training

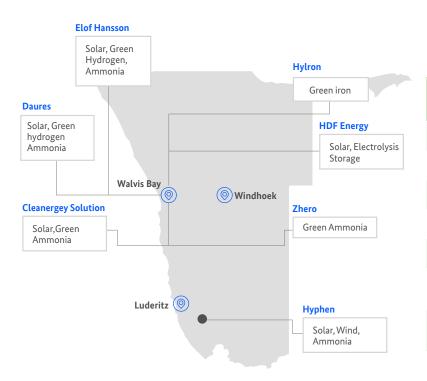
UNAM University of Namibia
VTC Vocational Training Centre

ANALYTICAL REPORT

1.1 Status quo – overview of existing training measures and training providers

Namibia's National Renewable Energy Policy of 2017 [1] prioritises the transition to renewable energy (RE), while the Green Hydrogen and Derivatives strategy of 2022 emphasises the utilisation of green hydrogen (GH₂), with electrolysers playing a pivotal role in this shift. Section 1.1 provides an overview of the current landscape regarding the deployment of electrolysers in Namibia and assesses the existing training measures and institutional training capacities that are essential for equipping the workforce with the necessary skills.

Current Deployment of Electrolysers in Namibia


The current situation regarding skills in the installation, maintenance, and operation of electrolysers is all but non-existent in Namibia due it being an emerging sector. There are several projects at different stages of development in Namibia.

Electrolyser installation, maintenance, and operation skills are currently needed in the country, as several projects are moving from planning

phases to development and operation. Some key pilot projects include HyIron Oshivela, Cleanergy Solutions Namibia, the Daures Green Hydrogen Village, and potential installations under the Hyphen Hydrogen Energy project. Some of these projects are progressing toward the procurement and deployment of electrolysers.

These initiatives signal a clear transition from feasibility to implementation along Namibia's GH_2 journey. Other non-pilot projects include the Hydrogène de France (HDF), which is still in the inception stages. Other non-pilot projects are also under consideration as the nation aims to expand its capabilities in GH_2 production. Figure 1 shows some key projects and their locations in Namibia. The focus of this study is on identifying the skills required in the installation and maintenance of electrolysers, which remains a critical need in the region.

Figure 1: Key Green Hydrogen Projects in Namibia

Project	Phase of Development (mid 2025)
Hyphen	Feasibility
Elof Hansson	Development
HDF	Development/planning phase
Hylron	Phase 1- Production in 2024/5
Zhero	Development/planning phase
Cleanergy Solotions	Pilot/Phase 1- Production in 2024/5
Daures Hydrogen Village	Pilot/Phase 1- Production in 2024/5

While electrolyser hardware begins to arrive, local technical capacity needed to install, operate, and maintain these systems is severely lacking. Table 1 summarises the key GH₂ projects currently underway, or planned, in Namibia and outlines their scale and current development status:

Table 1: Summary of Key Hydrogen Projects and Current Status in Namibia

Project Name	Size	Current Status (mid 2025)
Hyphen Hydrogen Energy	Targeting 2 MTPA of green ammonia by 2030 (from 3 MPTA of green hydrogen equivalent). Renewable capacity: 7.5 GW, electrolyser capacity: 3 GW. Investment: > US\$10 billion. [2]	Advancing with front-end engineering design. Construction of phase one planned to start by end of 2026, with commissioning by end of 2028. [2] Feasibility and Implementation Agreement signed. [2]
Cleanergy Solutions Namibia (Refuelling Station)	5 MW PEM electrolyser for refuelling station. Larger green hydrogen and ammonia factory planned [4].	Construction of the refuelling station commenced in late September 2024, aiming for operation by mid-2025. Demonstration plant completed in 2024, operation to commence in 2025.
HyIron Oshivela Plant	12 MW electrolyser. Targeting 15,000 tonnes of Direct Reduced Iron (DRI) in phase 1, scaling to 2 million t/y by 2028.	Commenced green hydrogen production in March 2025, scaling up to full capacity. Work on phases 2 and 3 expected to commence in 2025.
Daures Green Hydrogen Village	Pilot phase: 18 tonnes of green hydrogen, 100 tonnes of green ammonia. Planned expansion: > 180,000 t/y hydrogen, 1 million t/y ammonia.	Pilot project completed, with launch expected in the fourth quarter of 2025. Preparing for design studies for the larger facility.
Hydrogène de France (HDF) Energy	70 MW electrolyser. Aiming to reach 3.5 GW electrolyser by 2030. 85 MW solar PV plant. Green hydrogen production unit - Integrated with battery storage and fuel cells for stable power supply.	Feasibility studies completed. Land secured. Investors secure final investment with decision pending.
Zhero/Envision Energy Plant	500,000 t/y of green ammonia from 2029.	Construction set to commence in 2025, completion by 2028, production from 2029.

Figure 2: HyIron (left) and Cleanergy (Right)

Current Training Measures

At present, no institution in Namibia offers a dedicated vocational or technical qualification tailored to electrolyser systems. While the Namibia University of Science and Technology (NUST) and the University of Namibia (UNAM) are building research capacity through green hydrogen institutes and postgraduate programmes for upskilling relevant qualification holders, these are primarily academic and not vocationally hands-on.

NUST plans to offer an integrated bachelor's degree programme in Renewable Energy, with focus on solar systems. While these moves are noble, they fail to address the technical skills required for electrolyser installation, maintenance, and operation at the technician level. It is worth noting that the Namibia Training Authority (NTA) has embarked on a massive skills gap analysis in the $GH_2\,$ sector. The current report explores the skills gaps in the electrolyser technician in particular.

Although the Namibia Training Authority (NTA) has no qualifications that directly address hydrogen or electrolysers, they do provide partial foundational knowledge for the installation, maintenance, and operation of electrolysers. Table 2 presents the relevant base qualifications for electrolyser technicians and their justification.

Table 2: Relevant NTA Qualifications for Electrolyser Technicians

Programme Title	Level	Relevance to Electrolyser Work	Justification
National Vocational Certificate in Electrical Engineering – Electrical General	2-4	Electrical Installation and Basic Operation.	Covers electrical safety, wiring, circuit installation, and maintenance fundamentals.
National Vocational Certificate in Electrical Engineering – Electrical Energy	5	System Commissioning and Troubleshooting.	Includes advanced power systems, load analysis, and commissioning practices.
National Vocational Certificate in Electrical Engineering – Instrumentation and Control	2-4	Instrumentation Basics.	Teaches how to install, calibrate, and maintain instruments (sensors, control loops).
National Vocational Certificate in Electrical Engineering – Instrumentation and Control	5	Automation and Monitoring.	Covers PLCs, SCADA, industrial communication, and system-level integration.
National Vocational Certificate in Metal Fabrication (Pipefitting and boiler maker)	4	Pipefitting, mechanical assembly and pressure systems.	Piping for water, hydrogen, and oxygen.

 $While the \ listed \ qualifications \ provide \ foundational \ technical \ skills, none \ of \ them \ currently \ address \ the \ following:$

- Hydrogen-specific safety
- Electrolyser stack operation or design
- Gas system commissioning or maintenance
- Integration of renewable energy into electrolysis systems

Conversely, some key industry stakeholders are planning to offer in-house training tailored to their needs. A selection of these efforts is presented in Table 3. They also provide real-world environments for skills development, internships, and industrial placement.

Table 3: Industry Stakeholders Training Efforts

Stakeholder	Role
Hyphen Hydrogen Energy	Large-scale project holding potential for thousands of construction and operational jobs. A future anchor for hydrogen-related technician training.
Cleanergy Solutions Namibia (O&L and CMB.TECH)	Offers on-site training at its hydrogen refuelling and ammonia terminal facilities; a pioneer in hands-on electrolyser training.
Daures Green Hydrogen Village	Acting as a demonstration and training hub, especially in ammonia production and small-scale electrolyser maintenance.
HDF Energy Namibia	Focuses on integrating hydrogen production with power generation and fuel cells—relevant for dual training in energy systems.
Oshivela Green Hydrogen and Iron Project	Offers training potential in hydrogen integration with iron ore reduction processes, creating a demand for advanced electrolyser operation skills.

Currently, the suppliers of electrolysers offer training for the regular maintenance and operation of electrolysers installed throughout Namibia.

However, relying too heavily on these suppliers for breakdown maintenance poses a significant risk, high costs, and may lead to prolonged shutdowns that are not sustainable in the long term. It is essential to develop a robust training program for Namibian technicians in order to remedy these issues.

Operational efficiency and reduced downtime can be ensured by empowering TVET trainees with skills necessary to perform all types

of maintenance and repairs on both Alkaline and Proton Exchange Membrane (PEM) electrolysers (also known as Polymer Electrolyte Membrane). Investing in local expertise is not only a practical solution but also vital for the long-term sustainability of Namibia's green hydrogen industry.

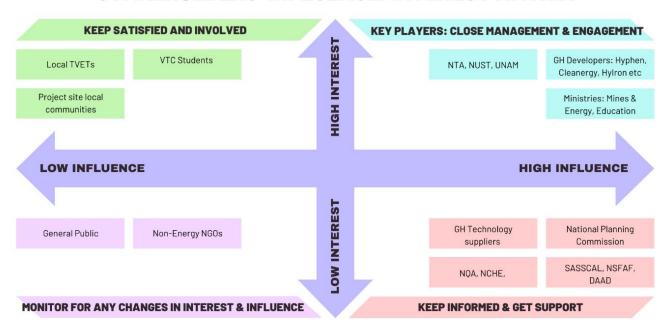
Currently, there are no dedicated electrolyser training providers within the Southern African Development Community (SADC) region. However, several initiatives and international programmes are available to support skills development in electrolyser installation, maintenance, and operation. This is discussed in detail in Section 1.4.

1.2 Stakeholder Mapping and Gap Analysis

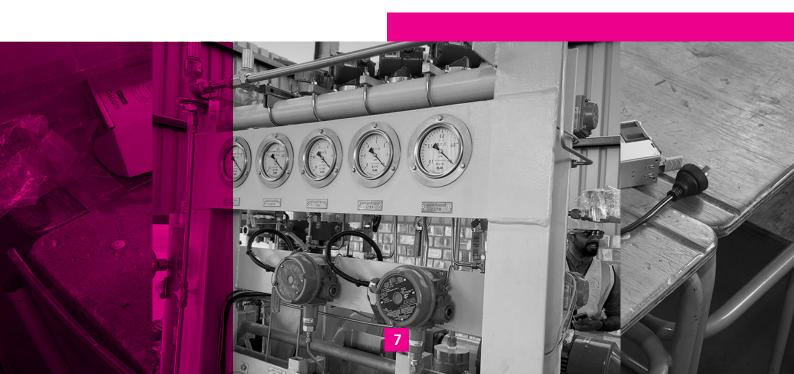
Several stakeholders are involved in the electrolyser installation, maintenance, and operation training in Namibia. Table 4 captures the key stakeholders, their roles, and their interests.

Table 4: Key Stakeholders and Roles

Table 4. Ney Stakeholders and I		
Stakeholder Group	Key Stakeholders	Role/Interest in Electrolyser Installation Operation and Maintenance
Government	 Ministry of Education, Innovation, Youth, Sport, Arts and Culture (MEIYSAC) National Planning Commission (NPC) National Training Authority (NTA) National hydrogen strategy 	 Policy and regulation National hydrogen strategy Skills development investment and oversight
Regulatory Authorities	- Namibia Energy Regulatory Authority (NERA) - Namibia Standards Institution (NSI)	- Licensing and compliance - Safety standards (e.g. ATEX, ISO)
Academic and TVET Institutions	 Namibia University of Science and Technology (NUST) University of Namibia (UNAM) VTCs (Eenhana, Nakayale, Windhoek, etc.) 	- Curriculum development - Training delivery (TVET and university) - R&D and applied innovation
Industry and Project Developers	 Hyphen Hydrogen Energy Cleanergy Solutions Namibia (O&L and CMB Tech) Daures Green Hydrogen Village HDF HyIron Namport (infrastructure support) NamPower 	 Electrolyser design and supply Tech transfer and maintenance support Training for technicians and engineers
Technology Providers	- Siemens Energy - ITM Power - H-TEC Systems - Enapter - Plug Power	- Technical assistance and funding - Workforce development programs - International best practice and standards support


Stakeholder Group	Key Stakeholders	Role/Interest in Electrolyser Installation Operation and Maintenance
International Development Partners	 GIZ (H2-Diplo, PtX Hub) SASSCAL European Investment Bank (EIB) KfW UNDP EU 	 Technical assistance and funding Workforce development programs International best practice and standards support
Private Sector Contractors and SMEs	 Electrical and mechanical contractors EPC (Engineering, Procurement, Construction) firms Water treatment companies 	Execution of installation and maintenanceSkilled labour employmentSupply chain integration
Communities and Civil Society	 Local communities near hydrogen hubs (e.g. Lüderitz, Walvis Bay) Youth associations NGOs (environmental and social) 	 Employment and skills development Social license to operate Environmental advocacy
Professional and Certification Bodies	 Engineering Council of Namibia Namibia Training Authority (NTA) Namibia Qualifications Authority (NQA) 	 Certification and qualification alignment Support for skills funding Professional recognition

The interest and influence matrix of the key stakeholders is represented in Figure 3, after which a brief explanation further clarifies the impact of necessary engagement with the stakeholders.


Figure 3: Stakeholders' Influence/Interest Matrix

STAKEHOLDERS' INFLUENCE/INTEREST MATRIX

Explanation of the Grid:

- ▶ **Key Players (High Influence/High Interest):** These stakeholders are crucial. They have the power to significantly impact the electrolyser sector and are deeply invested in its success. Requires close management and engagement.
- Manage Closely (High Influence/Low Interest): These indirectly interested stakeholders can influence the sector. To ensure their continued support it is necessary to keep them informed, as their influence can be critical.
- Keep Satisfied (Low Influence/High Interest): These stakeholders hold a keen interest in the sector's outcomes but with limited powers to directly influence it. Efforts should be made to keep them satisfied and involved.
- Monitor (Low Influence/Low Interest): These stakeholders have the least influence and interest. Although requiring minimal attention, they should nonetheless still be monitored for any changes of interest or influence levels

1.3 International Benchmarking

Since Namibia does not currently offer training in electrolyser installation, maintenance and operations, this section outlines the certification requirements. This will assist the next phase of the project, during which the training programmes will be developed. Installing, operating, and maintaining electrolysers involves different skills and certifications. Table 5 summarises the Key Core Competency Areas for Certification.

Table 5: Key Core Competency Areas for Certification

Area of Competency	Description
Hydrogen Safety and Hazard Control	Understanding of ATEX zones, gas detection, LEL/UEL limits, PPE, and ESD.
Pressure Vessels for storage and transporting hydrogen	Verifies that hydrogen tanks and components can safely handle stresses like embrittlement, leakage, and high pressure.
Electrical and DC System Installation	Competency in DC cabling, grounding, explosion-proof wiring systems.
Electrolyser Operation (PEM/Alkaline)	Stack operation, voltage/current management, diagnostics.
Instrumentation and Control (SCADA/PLC)	Programming and interfacing SCADA /PLC with H□ production systems.
Maintenance and Troubleshooting	Replacing membranes, valves, stack parts; leak detection.
Water Treatment System Operation	Handling RO and DI systems, ensuring ultrapure water for electrolysis.
Emergency Response and Risk Management	Hydrogen-specific firefighting, emergency shutdown, evacuation procedures.

European Certifications and Training

The following European bodies provide certifications that could be considered for training in Namibian.

TÜV SÜD / TÜV Rheinland

Both TÜV SÜD (Technischer- Überwachungsverein Süd) and TÜV Rheinland are leading German certification, testing, and inspection organisations with global operations. They play key roles in hydrogen technology, particularly in safety, certification, and training for hydrogen production, storage, and distribution.

Key Roles in Hydrogen Technology:

Certification and Standards Compliance

- ► The certification of electrolysers, fuel cells, hydrogen storage systems, and refuelling stations according to international standards (e.g., ISO 22734, IEC 62282).
- Assess the safety, performance, and durability of hydrogen systems.
- Providing CE marking, ATEX (explosion safety), and pressure equipment directives (PED) compliance.

Training and Qualification Programs

- Offering specialised training for hydrogen system installation, operation, and maintenance (O&M).
- Programs covering safety protocols, risk assessments, and best practices for handling hydrogen.

Benchmarking and Consulting

Support technology benchmarking for hydrogen projects.

 Providing advice on regulatory compliance, efficiency optimisation, and safety management.

TÜV SÜD provides certification, safety consulting, and technical advisory services to Hyphen Hydrogen Energy in Namibia. This project is one of Africa's largest GH_2 and ammonia initiatives, aiming to achieve 3 gigawatts (GWs) of electrolyser capacity by 2030. Their relevant Namibian experiences qualify them as a suitable partner for benchmarking the training of electrolyser technicians in the region.

Website: www.tuvsud.com | www.tuv.com

EU H2Skills / H2EU+Store

- Scope: European upskilling programme for hydrogen workforce (2023–2027).
- Certifications: Expected to offer technician-level certifications aligned with ECVET.
- Website: www.h2skills.eu

The European Union has launched initiatives such as EU H2Skills and H2EU+Store to advance hydrogen technology expertise and infrastructure. EU H2Skills focuses on workforce training and standardisation for installing, operating, and maintaining electrolysers and fuel cells, ensuring that professionals are equipped with the necessary skills. Meanwhile, H2EU+Store concentrates on large-scale hydrogen storage and transport, emphasising safety and certification frameworks.

The two programs share common goals: developing standardised training curricula for hydrogen professionals, ensuring safety and compliance with EU regulations like ISO and IECEx, and support for upskilling efforts in emerging hydrogen economies beyond Europe.

Within the realm of certification and training, these initiatives provide guidelines aligned with EU standards for electrolysers and hydrogen fuel, to aid in establishing competency frameworks for hydrogen technicians. They also offer modular training programs that cover crucial areas such as electrolyser installation and safety, hydrogen storage and handling, along with maintenance and troubleshooting — all focused on practical skills for operators engaged in renewable hydrogen projects.

These programs present promising opportunities for Namibia's hydrogen sector. Their strengths include alignment with EU standards, which is advantageous if Namibia intends to export green hydrogen to Europe. The structured training approaches can be adapted locally, and their safety-first methodology is particularly important for Namibia's developing hydrogen industry.

DVGW (German Technical and Scientific Association for Gas and Water)

- Scope: Publication of standards (e.g. G 265-2) for hydrogen installation and grid compatibility.
- Certification Types: Installer certification, hydrogen network readiness, safety compliance.

DVGW offers specialised training programs aimed at educating technicians and engineers on hydrogen safety, the operation and maintenance of electrolysers, and blending hydrogen into existing gas grids. They also certify professionals to ensure compliance with German and EU standards.

The extensive expertise of DVGW makes it a valuable benchmark for Namibia's electrolyser programs, especially given its strict safety standards and detailed guidelines specific to electrolysis systems, like the G 485. Furthermore, their EU-aligned certifications could facilitate Namibia's hydrogen export ambitions to European markets.

Website: www.dvgw.de

Summary

In summary, these three organisations hold varied strengths and limitations for the Namibian context. Table 6 provides an overview.

Table 6: Comparison with Other Standards (TÜV, EU H2Skills)

Aspect	DVGW	TÜV SÜD/Rheinland	EU H2Skills
Focus	Gas/H ₂ infrastructure	Global H ₂ certification	EU workforce training
Key Standard	DVGW G 485 (Electrolysers)	ISO 22734, IECEx	Modular skills framework
African Relevance	Limited (but adaptable)	Strong (Namibia projects)	EU-focused

African and Asian Examples

It is worthwhile to explore the early stages of training in electrolyser systems, gaining momentum across the African and Asian continents. The following examples provide a benchmark reference for Namibia.

South Africa – Hydrogen South Africa (HySA) Program (https://www.hysasystems.com)

The Hydrogen South Africa (HySA) Programme is a national flagship initiative by South Africa's Department of Science and Innovation (DSI) to leverage the country's significant platinum group metal (PGM) resources to develop an indigenous knowledge-based economy centred on hydrogen and fuel cell technologies.

- Training Focus: Covers hydrogen production (including electrolysis), storage, and fuel cell technology.
- Partners: Universities (e.g., University of the Western Cape), government, and industry.
- Benchmarking Value: HySA provides technical training and research collaboration opportunities that Namibia could adapt. This is similar to NUST's initiative of a learning factory concept to be established at the Lüderitz campus.

Morocco – Institut de Recherche en Énergie Solaire et Énergies Nouvelles (IRESEN) (https://iresen.org)

IRESEN operates across the entire value chain of green innovation, through financial support and human and technical assistance for researchers, doctoral students, entrepreneurs (startups, SMEs and manufacturers) throughout the project development process, through to the marketing of innovative products, processes and services. A potentially good benchmark to enable collaboration between NTA and NUST in skills development across the \mbox{GH}_2 value chain.

- ► Training Focus: GH₂ production, electrolyser systems, and renewable energy integration.
- Partners: German development agencies (GIZ), industry, and universities.
- Benchmarking Value: Morocco is a leader in African green hydrogen; Namibia could model its vocational programs after IRESEN's hands-on training.

Egypt – Regional Centre for Renewable Energy and Energy Efficiency (RCREEE) (www.rcreee.org)

RCREEE is an inter-governmental organisation promoting renewable energy and energy efficiency in pan-Arab countries. As the technical arm of the Arab League's Energy Department and AMCE, it collaborates with governments, international partners, and the private sector to advance

clean energy policies, develop technologies, encourage investments, and build capacity, boosting the region's share in modern energy solutions.

- Training Focus: Hydrogen technologies, including electrolyser operation and safety.
- Partners: International organisations (UNIDO, EU) and African governments.
- Benchmarking Value: RCREEE offers regional vocational training that Namibia could join or replicate.

India – National Institute of Solar Energy (NISE) and Skill Council for Green Jobs (SCGJ) (https://www.nise.res.in)

NISE is an autonomous institute under the Ministry of New and Renewable Energy (MNRE), India, focused on research, testing, certification, and development of solar products. It supports MNRE's goal to make India self-reliant in renewable energy and to address challenges during the National Solar Mission (NSM). NISE has contributed to the solar sector by developing new technologies and standards, and it aims to further accelerate renewable energy growth in collaboration with the Indian government.

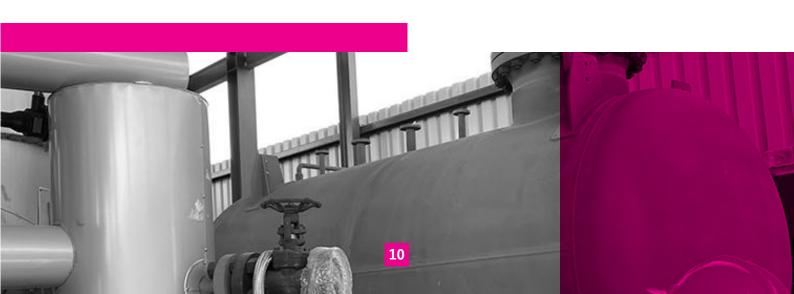
- ► Training Focus: GH₂ production, electrolyser maintenance, and solar integration.
- Partners: Ministry of New and Renewable Energy (MNRE), private sector.
- Benchmarking Value: India has scalable vocational training models that Namibia could customise.

China – China Hydrogen Alliance (CHA) and Vocational Training Institutes (https://www.ceic.com)

The China Hydrogen Alliance (CHA) is a key industry group focused on developing China's hydrogen energy sector, promoting research, and setting technical standards. It fosters cooperation and strategic planning through its analyses and roadmaps, predicting strong growth in hydrogen demand and a shift to cleaner energy. With specific vocational training links still limited, CHA's support for capacity building suggests involvement in developing a skilled workforce for China's hydrogen industry.

Training Focus: Large-scale electrolyser deployment, PEM/alkaline electrolysis, and safety protocols.

- Partners: Government, Sinopec, and academic institutions.
- Benchmarking Value: China leads in electrolyser manufacture;
 Namibia could adopt necessary best practices in maintenance training.


Japan – Fukushima Hydrogen Energy Research Field (FH2R) and Technical Colleges

- Training Focus: Advanced electrolyser operation, hydrogen safety, and system integration.
- Partners: NEDO, Toshiba, and Toyota.
- Benchmarking Value: Japan's high standard in technical training could guide Namibia's vocational programs.

Summary

The African and Asian organisations are government-run bodies that consolidate research from universities, vocational centres, and industry stakeholders. Since most Vocational Training Centres (VTCs) are not easily accessible online, these organisations will provide direct links to suitable VTCs for partnership opportunities with the Namibia Training Authority (NTA).

Furthermore, these models will improve the dual training system and encourage the establishment of technology centres or learning factories. These facilities will enable practical interactions among vocational experts, researchers, innovators, and industry players throughout the entire green hydrogen value chain.

1.4 Skills Gap Analysis in the Field of Electrolyser Installation, Operation and Maintenance

Industry Stakeholders' Key Skills Requirement

The following skills align with key industry stakeholders' requirements for the various projects listed in **Table 1**. Some skills are not at the TVET level, as some operations require higher engineering skills. This is further explained in **Section 1.5**.

Electrical and Power Systems

- ► Installation and maintenance of high-voltage DC systems from solar/wind sources
- Integration of renewable energy with electrolyser systems
- ► Electrical protection systems and grounding
- Power electronics (inverters, transformers)

Electrolyser Operation and Maintenance (PEM / Alkaline)

- Electrolyser stack installation and commissioning
- Performance diagnostics (voltage, current, temperature monitoring)
- System calibration and control (SCADA/PLC interfaces)
- Hydrogen yield monitoring and optimisation
- Troubleshooting low-pressure and purity issues

Instrumentation and Control (I&C)

- Calibration of flow, pressure, temperature, and conductivity sensors
- Maintenance of automated control systems (e.g. PLCs, HMIs)
- Alarm response and system health checks

Mechanical Maintenance

- Assembly and preventive maintenance of pumps, valves, and compressors
- Leak detection systems for hydrogen
- Piping system inspection and cleaning (stainless steel, composite piping)

Water Treatment and Recycling

- Operation of reverse osmosis (RO) and deionisation (DI) units
- Monitoring water quality (TDS, pH, conductivity)
- Closed-loop water reuse for sustainable operation

Hydrogen Safety and Risk Management

Understanding ATEX zones and gas classification standards

- Use of hydrogen detectors and alarms
- Emergency shutdown and fire suppression protocols
- Personal protective equipment (PPE) and evacuation procedures

Process Integration Skills

- Integration of hydrogen production with downstream uses (e.g., ammonia synthesis, DRI iron production)
- Control of flow rates and synchronisation with industrial furnaces
- Process control logic across multi-unit operations

Gaps in the National Vocational Qualifications

Current National Vocational Qualifications have elements that are relevant to Electrolyser installation, operation, and maintenance. However, the gaps are non-trivial. Table 7 presents a summary of some of the gaps.

Table 7: Areas of Skills Gap and Observation

Area	Skills Gap	Observations
Electrolyser-Specific Technical Training	Major gap	No formal qualification or certifications exist in PEM/alkaline electrolyser operation or maintenance.
Instrumentation and Control (Hydrogen Context)	Partial gap	Some training in general I&C exists but lacks hydrogen-specific applications (SCADA for electrolyser systems).
Hydrogen Safety Protocols	Major gap	No widespread training for ATEX compliance or hydrogen safety. Few emergency response capabilities for hydrogen incidents.
Water Treatment for Electrolysis	Partial gap	Basic water treatment is covered in NVC in Water Supply and Sanitation qualification but not tailored to ultrapure water and closed-loop reuse in electrolysis.
Hydrogen Integration with Industry (e.g., Iron/Ammonia)	Emerging gap	Currently no qualification to support the integration of hydrogen with iron reduction or ammonia production.
Workplace-Based Learning (WBL) Opportunities	Severe gap	Few or no structured internships/apprenticeships at hydrogen project sites in Namibia.

Two key national qualifications [5] are essential for the installation, operation, and maintenance of electrolysers.

- $1. \quad \text{National Vocational Certificate in Electrical Engineering (Electrical General) Levels 2 to 5}\\$
- $2. \quad \text{National Vocational Certificate in Electrical Engineering (Instrumentation and Control) Levels 2 to 5}\\$

By analysing these qualifications, significant skills gaps have been identified that need to be addressed for electrolyser technicians. For a detailed overview of these gaps, please refer to **Tables 8 and 9**, which provide a comprehensive gap analysis derived from the current training offerings. Understanding and bridging these gaps is crucial for enhancing the skills of electrolyser technicians. Hence, this will be the basis for the proposed short courses enumerated in **Section 2**. These short courses will ultimately lead to improved operational efficiency and safer practices in the field.

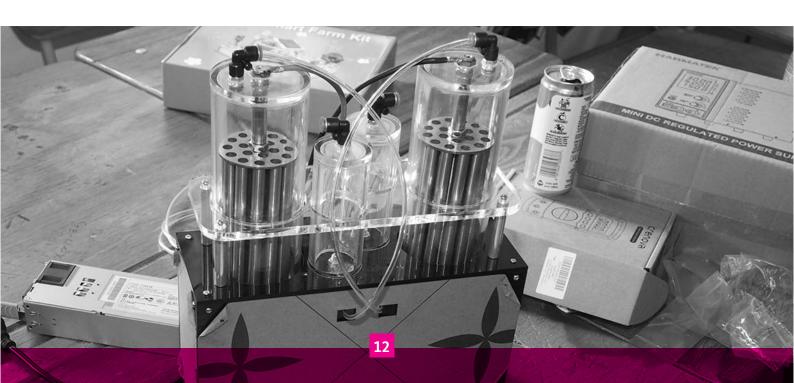


Table 8: Curriculum Gap Analysis Electrical General

Electrolyser Skill Area	Existing Related Content	Gap Identified	Recommendation
Electrical Installation for Electrolysers	Basic installation principles (general) at Levels 3-5	No mention of DC systems for electrolysis, hydrogen-specific cabling, or control panels	Short course on "Electrical Installation for Hydrogen Systems"
2. System Commissioning	"Test and commission installations" (Level 5)	No mention of electrolyser commissioning, gas-tightness, purging protocols	Short course on "Commissioning of Electrolyser Units"
3. Maintenance of Electrolysers	"Conduct planned and unplanned maintenance" (Level 4)	Does not cover membrane cleaning, gas sensor calibration, or stack servicing	Short course on "Maintenance of Electrolyser Systems"
4. Hydrogen and Gas Safety	No coverage	No gas hazard awareness, explosion-proof equipment, or H2 detection	Short course on "Hydrogen Safety and Hazard for GH2 Production"
5. Electrolyser Operation	General operation principles in electrical context only	Missing operational control logic, diagnostics, and performance tuning	Short course on "Operational Management of Electrolysers"
6. Renewable Integration with Electrolysers	General metering and power systems coverage	Missing integration of variable renewable energy sources (solar/wind)	Short course on "Integrating Electrolysers with Renewables"

Table 9: Curriculum Gap Analysis Electrical (Instrumentation and Control)

Electrolyser Skill Area	Existing Related Content	Gap Identified	Recommended Short Course
1. Sensor and Instrument Integration	Sensor installation, calibration, loop checking, signal types (Levels 3–4)	No application to gas-specific sensors (e.g., H ₂ detectors, dew point, pressure)	"Instrumentation for Hydrogen and Electrolysis Systems"
2. Control Systems (PLC/SCADA)	PLC programming, SCADA systems, process automation (Levels 4–5)	No electrolyser-specific logic, stack control, ramp-up/down cycles	"PLC and SCADA Programming for Electrolyser Control"
3. Electrolyser System Operation	General process operation principles, DCS systems (Levels 4–5)	No training on electrolyser stacks, efficiency optimisation, operational safety	"Electrolyser Operation and Performance Management"
4. Maintenance Procedures	Routine and predictive maintenance, diagnostics, loop tuning (Levels 4–5)	No stack replacement, membrane servicing, gas system troubleshooting	"Maintenance of Electrolyser Units"
5. Process Safety and Gas Hazards	Basic industrial safety and security systems (Level 4), general workplace safety (Level 2)	Lacks hydrogen-specific safety, LEL monitoring, ATEX zones, emergency response	"Hydrogen Safety and Hazard Mitigation for Technicians"
6. Data Logging and Remote Monitoring	Data acquisition, SCADA, communication protocols (Level 5)	No focus on hydrogen system telemetry, fault logs, cloud monitoring	"Data Acquisition and Remote Monitoring in Hydrogen Systems"
7. Integration with Renewables	None explicitly covered	Lacks skills for power-electronics interfacing with VRE (solar, wind)	"Integration of Electrolysers with Renewable Energy Sources"
8. Water and Gas Quality Instrumentation	Analytical instrumentation (Level 4)	No detail on electrolyser input water quality monitoring (conductivity, pH, TOC)	"Water and Gas Quality Monitoring for Electrolysis Systems"

RECOMMENDATIONS FOR TRAINING MEASURES IN ELECTROLYSER INSTALLATION, OPERATION AND MAINTENANCE

2.1 Brief Description of Recommended Short Courses

Training for the installation, operation, and maintenance of electrolysers is all but non-existent in Namibia and is still at early stages in Europe. Therefore, we recommend focusing on upskilling graduates from Vocational Training Centres (VTCs) who have studied Electrical General, Instrumentation and Control. Table 10 lists the proposed short courses, their objectives, and the corresponding training levels. However, Namibia University of Science and Technology (NUST), with NQF Level 6 (Diploma) or Level 7 (B Tech) in Electrical or Mechanical Engineering, could also have the short courses listed in Table 10 incorporated with a module on pedagogy.

They may subsequently become trainers for the VTC graduates and thereby create a multiplier effect for the training of electrolyser installation, operation and maintenance in Namibia.

Table 10: Proposed Short Courses, their Aims and Levels

Module	Short Course Title	Aim of Training	Proposed NQF Level
1	Hydrogen Fundamentals and Electrolyser Technologies	Introduce trainees to the hydrogen value chain, electrolysis principles, and electrolyser types (PEM/Alkaline).	Level 3
2	Electrical Installation for Electrolyser Systems	Equip electrical technicians with skills to install and connect hydrogen-specific DC systems safely.	Level 4
3	SCADA, PLC and Control for Electrolysers	Train technicians to operate and interface with electrolyser control systems (PLC, SCADA, HMI).	Level 5
4	Electrolyser Stack Operation and Performance Monitoring	Enable safe stack operation, monitoring of key parameters, and operational optimisation.	Level 4-5
5	Maintenance of PEM and Alkaline Electrolysers	Provide knowledge and practical skills to perform routine and preventive maintenance on electrolyser systems.	Level 4
6	Water Treatment for Electrolysis Operations	Build competence in managing water purification systems (RO, DI) and ensuring water quality.	Level 4
7	Hydrogen Safety and Emergency Response	Ensure safe work practices in hydrogen environments, including ATEX zones and gas detection.	Level 3-4
8	Integration of Electrolysers with Renewable Energy Systems	Prepare technicians to manage power variability and interface electrolysers with solar/wind systems.	Level 5

The eight short courses are mandatory in order to become a qualified professional in the installation, operation, and maintenance of electrolysers. However, the necessity of certain courses may vary according to the technician's specific job description. For instance, if a candidate's role is limited to operation and maintenance, Module 2 may be deemed unnecessary.

2.2 Recommended Upskilling Training Measures Related to the Short Courses

A detailed analysis of the NTA-registered programs [6] highlights the key areas related to the installation, operation, and maintenance of electrolysers as follows:

- National Vocational Certificate in Electrical Engineering Electrical General (NQF Levels 2-4)
- National Vocational Certificate in Electrical Engineering Electrical Energy (NQF Level 5)
- National Vocational Certificate in Electrical Engineering Instrumentation and Control (NQF Levels 2-4)
- National Vocational Certificate in Electrical Engineering Instrumentation and Control (NQF Level 5)

Details for the justification for these qualifications are presented in Table 2. It is worth noting that most Vocational Training Centres (VTCs) within the country only offer qualifications up to NQF Levels 1 to 3. Therefore, the few VTCs capable of delivering training up to Level 5 should be targeted to pilot the recommended upskilling program.

Furthermore, the recommended short courses could be expanded to become a full qualification at NQF Level 5, with the admission requirement being holders of Level 4 qualifications in the aforementioned qualifications.

As elaborated in Section 2.5, the proposed delivery method will be based upon Germany's dual studies format, yet adapted to the Namibian context. This dual approach could enhance the practical skills of trainees and improve their employability by integrating classroom learning with hands-on experience in the industry. This enhances their preparation for future career opportunities in the field.

2.3 Short Courses: Brief Outline of Competencies Required

As outlined in Table 8, eight short courses are recommended for the upskilling of holders of an electrical general or energy qualification, as well as holders of instrumentation and control level 3, to become electrolyser operators at level 4/5. The details of these short courses, includes duration, learning outcomes, and expected competencies, which are all provided in this section.

Table 8: Short Course Recommendations

Title of Short-Course 1	Hydrogen Fundamentals and Electrolyser Technologies		
Objective	Provides a foundational understanding of hydrogen production, electrolysis technologies, and applications.	NQF Level 3	
Target Group	All technician-level trainees	Duration	5 days
Comprehensive outcome	Trainees will understand hydrogen value chains and distinguish between major electrolyser technologies (PEM, Alkaline, SOEC).		
Learning outcomes	 Explain the hydrogen value chain and green hydrogen context. Describe the working principles of PEM and Alkaline electrolysers. 		
	Compare different electrolysis technologies and their applications.		
Topics	ppics 1. Hydrogen production pathways		
	2. Electrolyser components and chemistry		
	3. PEM vs Alkaline systems		
	4. Industrial hydrogen use cases		
Practical Session(s)	Demonstration of electrolyser systems; visual comparison of PEM vs Alkaline units		
Competencies Gained	Understanding the role of hydrogen in the global energy transition.		
	Learn how electrolyser technologies (PEM, Alkaline, SOEC) work.		
	Compare applications and performance characteristics of different electrolyser types.		
Title of Short-Course 2	Electrical Installation for Electrolyser Systems		
Objective	Prepare technicians for safe and effective DC power system installation and hydrogen-specific wiring.	NQF Level 4	
Target Group	Electrical General Graduates	Duration	5 days
Comprehensive outcome	Trainees will perform safe electrical installation of DC system	ns and hydrogen-rated con	nponents.
Learning outcomes	Learning outcomes • Identify DC components and protection systems.		
	Apply ATEX requirements for wiring in hazardous zones.		
	Perform panel wiring and component mounting for electron	olysers.	
Topics	1. DC systems, grounding, and protection		
	2. Cable routing for explosive atmospheres		
	3. Panel installation and termination		
	4. ATEX-compliant practices		
Practical Sessions	Hands-on panel installation, cable routing, and termination for hydrogen systems.		
Competencies Gained	Perform safe installation of DC electrical systems specific	to electrolyser units.	
Interpret and apply ATEX requirements for wiring in explosive atmospheres.			
	Install and test hydrogen-rated panels, breakers, and prote	ection devices.	

Title of Short-Course 3	SCADA, PLC and Control for Electrolysers		
Objective	Enable technicians to interact with control systems managing electrolyser stacks.	NQF Level	
Target Group	Instrumentation Graduates	Duration	10 days
Comprehensive outcome	Trainees will configure and operate SCADA and PLC systems	for electrolyser monitorin	g and control.
Learning outcomes	 Explain PLC functions in electrolyser systems. Configure SCADA displays and alarm logic. Operate and troubleshoot basic electrolyser control systems. 		
Topics	 PLC logic for stack management SCADA alarms, HMI interaction Electrolyser ramp-up/down programming Remote monitoring and data logging 		
Practical Sessions	Simulated PLC/SCADA setup; fault insertion and resolution using HMI tools.		
Competencies Gained	 Configure PLCs and SCADA systems for electrolyser operation and monitoring. Interpret control logic, alarms, and process automation workflows. Troubleshoot and maintain digital control interfaces (HMI, alarms, signals). 		
Title of Short-Course 4	Electrolyser Stack Operation and Performance Monitoring		
Objective	Train technicians to operate stacks safely and optimize performance.	NQF Level 5	
Target Group	Mixed (Electrical + I&C graduates)	Duration	10 days
Comprehensive outcome	Trainees will start, monitor and stop electrolyser stacks and optimise key performance parameters.		
Learning outcomes	 Start up and shut down electrolyser stacks safely. Monitor current, voltage, and temperature. Diagnose and address common operating faults. 		
Topics	1. Stack startup and shutdown 2. Monitoring current, voltage, temperature 3. Troubleshooting common faults 4. Efficiency and yield optimisation		
Practical Sessions	Live stack operation in demo lab or simulator; diagnostic exercises.		
Competencies Gained	 Start up and shut down electrolyser stacks following OEM procedures. Monitor key operating parameters (current, voltage, temperature). Identify and resolve basic performance issues affecting hydrogen yield. 		

Title of Short-Course 5	Maintenance of PEM and Alkaline Electrolysers		
Objective	Equip trainees to conduct scheduled and preventive maintenance.	NQF Level 4	
Target Group	Electrical / I&C / mechanical technicians	Duration	10 days
Comprehensive outcome	Trainees will carry out scheduled maintenance and address common issues in PEM and Alkaline systems.		
Learning outcomes	 Perform stack inspection and membrane checks. Service pumps, compressors, and valves. Apply leak detection protocols and replace faulty components. 		
Topics	 Membrane and gasket checks Electrolyte management Pump, valve, and compressor maintenance Leak detection (hydrogen sensors) Safe Ventilation and Purging Procedures for Electrolyser Maintenance in Hydrogen Environments 		
Practical Sessions	Dismantling stack components; leak detection drill; part replacement exercises.		
Competencies Gained	 Conduct preventive maintenance and routine checks on electrolyser systems. Inspect and replace stack components, seals, and membranes. Use diagnostic tools for troubleshooting electrical and mechanical faults. 		
Title of Short-Course 6	Water Treatment for Electrolysis Operations		
Objective	To build competence in water purification techniques essential for high-efficiency hydrogen production.	NQF Level 4	
Target Group	Technicians working in electrolyser O&M	Duration	5 days
Comprehensive outcome	Trainees will operate and maintain RO and DI water systems for electrolyser use.		
Learning outcomes	 Operate reverse osmosis and DI units. Monitor water quality parameters (TDS, pH, conductivity). Troubleshoot water system faults. 		
	Troubleshoot water system faults.		
Topics	 Troubleshoot water system faults. 1. Reverse osmosis (RO) system operation 2. DI unit maintenance 3. Water quality monitoring (TDS, conductivity, pH) 4. Closed-loop reuse systems 		
Topics Practical Sessions	 Reverse osmosis (RO) system operation DI unit maintenance Water quality monitoring (TDS, conductivity, pH) 	ises.	

Title of Short-Course 7	Hydrogen Safety and Emergency Response		
Objective	Ensure technicians work safely in explosive hydrogen environments.	NQF Level 4	
Target Group	All personnel involved in electrolyser operation	Duration	5 days
Comprehensive outcome	Trainees will follow ATEX standards and emergency procedur	es for hydrogen incidents	
Learning outcomes	 Identify hydrogen hazards and LEL values. Use PPE and gas detectors correctly. Respond to hydrogen leaks and fires. 		
Topics	 ATEX zones, gas classification Gas detectors and alarms PPE, evacuation, fire suppression Incident reporting and emergency drills 		
Practical Sessions	Emergency response drills; ATEX zone hazard walk-through; PPE usage exercise		
Competencies Gained	 Apply ATEX and LEL principles in hydrogen environments. Use gas detection equipment and personal protective equipment (PPE) appropriately. Effective response to hydrogen leaks, fires, or system failures. 		
Title of Short-Course 8	Integration of Electrolysers with Renewable Energy Systems		
Objective	Train technicians for interfacing variable solar/wind power with electrolysers.	NQF Level 5	
Target Group	Advanced trainees (Level 5+)	Duration	5 days
Comprehensive outcome	Trainees will configure electrolyser systems to operate with solar/wind energy sources.		
Learning outcomes	 Explain load-following operation with renewables. Configure the interface between VRE systems and electrolyser units. Troubleshooting integration issues (voltage drops, fluctuations). 		
Topics	 Load-following operation Buffer systems and DC/DC converters Grid and off-grid control logic 		
Practical Sessions	Simulated power variability exercise; configuration of load-matching logic.		
Competencies Gained	 Interface electrolyser systems with variable solar and wind energy sources. Manage voltage and current variability through load-following strategies. Troubleshooting integration issues between renewable energy and hydrogen production systems. 		

The implementation of these short courses or their transformation into a comprehensive one-year qualification may be further developed. This might require a bridging programme to enhance candidate skills prior to them undertaking the electrolyser technician qualification.

2.4 Potential Capacity-Building Initiatives Related to the Short Courses

This study shows that, currently, no NTA-recognised VTCs provide the two main qualifications needed to develop skilled technicians in electrolyser installation, operation, and maintenance at Level 4.

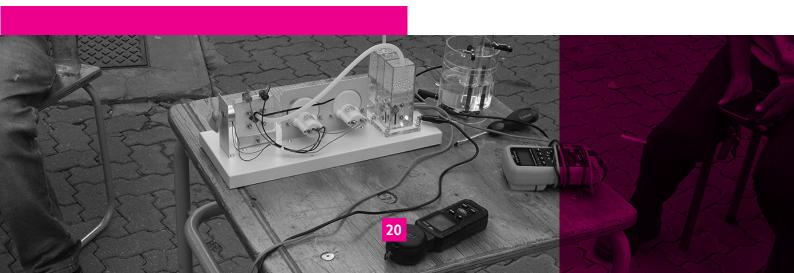
Furthermore, the training equipment at VTCs offering Level 3 qualifications is outdated and inadequate for electrolyser applications. These factors create significant challenges for finding a suitable VTC to pilot the essential training.

To overcome this challenge, we propose a collaborative initiative between the most competent VTC, and supportive industry partners such as HyIron or Cleanergy, to create an effective pilot training team. We strongly advocate for implementing a dual training system for this purpose.

Alternatively, these programmes could be hosted between identified VTCs and NUST or UNAM, where modern facilities are readily available. This will address the articulation problem that currently exists between the VTCs and the universities.

Including graduates from electrical, mechanical, and chemical engineering in the upskilling process can enhance training quality and cultivate a robust pool of electrolyser technicians.

This approach promises to generate a critical mass of skilled professionals who can meet the industry's growing demands. As an example, NUST could offer Level 6 Diploma programmes in Electrical Engineering and Mechanical Engineering.


These programmes will include relevant courses like automation, controls, measurements, renewable energy, and power systems. Consequently, diploma students shall easily be fast-tracked to becoming electrolyser technicians, requiring minimal additional training with modern laboratory equipment.

Infrastructure and Equipment Requirements

For effective electrolyser operation technician upskilling, we recommend the following practical equipment and facilities that a Vocational Training Centre (VTC) would need via effective partnering with industry. The setup is designed for hands-on, technician-level training and tailored to the proposed short courses.

Table 11: Core Training Facilities

Facility	Purpose
Hydrogen Training Lab (Safe Zone)	Controlled space for hands-on electrolyser operations, stack handling
Electrical Installation Workshop	For DC system setup, ATEX-compliant wiring, panel installation
SCADA/PLC Simulation Lab	For programming, troubleshooting, and HMI interface exercises
Water Treatment Mini-Plant	Training on RO and DI systems for ultrapure water preparation
Hydrogen Safety Training Room	For ATEX zoning, detector use, PPE drills, and virtual fire simulations
Renewable Energy Simulation Bench	Simulates solar/wind input variability for integration training
Mechanical Assembly Bay	Valve, pump, and compressor disassembly, maintenance, and diagnostics

 ${\bf Table\,12:\,Key\,Practical\,Equipment\,and\,Tools}$

Equipment	Training Use
Training Electrolyser Unit (PEM + Alkaline)	Demonstrates stack operation, control logic, and maintenance procedures
DC Power Supply Units (adjustable)	Simulates variable voltage input from renewables
Programmable Logic Controllers (PLCs)	Used to replicate electrolyser control scenarios
SCADA Interface Systems	HMI setup, real-time monitoring, alarm configuration
Reverse Osmosis (RO) and Deionisation Units	Operate and maintain ultrapure water systems
Water Quality Meters	Measure conductivity, TDS, pH
Hydrogen Leak Detectors (portable and fixed)	Detect leaks during safety drills
Explosion-Proof Lighting and Panels	Demonstrate ATEX-rated installations
Personal Protective Equipment (PPE)	Fireproof suits, gloves, gas masks, face shields, ATEX boots
Gas Storage Demonstrators (small-scale)	Simulate hydrogen production and safe containment
Simulation Software (Hydrogen Plant Models)	Practice process integration and remote-control logic
Solar/Wind Emulator Kit	Mimic renewable source behaviour for interfacing exercises

Table 13: Tools and Consumables

Item	Purpose
Industrial hand tools (multimeters, wrenches, testers)	General maintenance and installation tasks
Electrical cabling (DC-rated, ATEX-rated)	Hands-on installation tasks
Hydrogen-compatible tubing and valves	Piping and flow system exercises
Replacement parts for stacks/membranes	Practice assembly and troubleshooting
Safety signage and labels	Hazard zone simulation

 ${\bf Table\,14:} Industry\, {\bf Collaboration\, Requirements}$

Item	Purpose
Access to live industrial hydrogen sites	For internships, job shadowing, real system exposure
Donation or lease of training-scale electrolysers	Enable hands-on practical exercises with real equipment
Guest instructors from industry	Deliver specialised modules (e.g., hydrogen standards, OEM procedures)
OEM documentation and system manuals	Teach troubleshooting and operation aligned with real equipment

2.5 Recommendations for Potential Partnerships

As outlined in Section 2.4, we have identified two key local partners for a pilot dual-study system: Cleanergy and Oshivela HyIron. Both are small companies with electrolyser capacities of 5 MW and 12 MW, respectively, who have expressed their strong interest in pursuing this partnership.

To formalise this collaboration, several agreements are required, that cover confidentiality, OEM practices, amongst other terms. However, unlocking Namibia's green hydrogen potential depends on establishing these strategic partnerships, and we believe that these collaborations will be supported and encouraged.

Figure 4: Electrolysers at Oshivela HyIron

6 MW x 2 Electrolysers in Oshivela Hylron

Also two excellent German candidate companies for a partnership in Namibia, given their interest in providing their technology in the country.

Companies having Equipment and Projects with Possible Links to Namibia

Bilfinger

- Engaged in large-scale green hydrogen systems (in partnership with Green Hydrogen Systems).
- As an engineering service provider, Bilfinger is well-positioned to supply and/or support equipment installations in Namibia.

Siemens Energy

- Delivering large-scale electrolyser systems, including stacks and power electronics (e.g., Emden 280 MW plant).
- Could supply key components like stacks and electrification modules with vocational training relevance.

Alternatively, further German institutions and companies, which are already involved in dual study programs in Germany, and also interested in developing Namibia's green hydrogen industry, could be approached to pilot this arrangement.

Establishing partnerships with these organisations will help Original Equipment Manufacturers (OEMs) develop a skilled workforce for their equipment, to ensure reliable after-sales maintenance and long-term success.

Proposed German Dual-Study and Training Partners in Hydrogen

Maximator Hydrogen GmbH

- Dual-study partnership with Nordhausen University of Applied Sciences to train students in hydrogen tech through combined academic and practical workplace learning [5].
- Specialising in H₂ infrastructure solutions, including refuelling stations, compressors, and system integration.

Fraunhofer IWU

- Implementing practical microgrid projects with hydrogen production and fuel cell use in Walvis Bay (Namibia) [6].
- Providing applied research and training, thus making for a potential partner for vocational training content and localised capacity building.

BAM (Federal Institute for Materials Research and Testing)

- Supporting doctoral tracks and short courses in Namibia on hydrogen safety, lab capacity, and standardisation infrastructure [7].
- Covering hydrogen materials safety—a critical area for VTC practical labs and certification.

DECHEMA (Society for Chemical Engineering and Biotechnology)

 Leading the GH2 Namibia programme, supporting technical training, water management, and hydrogen technology research [8]

CONCLUSION AND RECOMMENDATIONS

Conclusion

Key conclusions indicate that Namibia currently faces a significant skills gap in electrolyser technology, as there's no dedicated vocational qualification for its installation, operation, nor maintenance.

Although some foundational electrical and instrumentation training exists through NQF-registered qualifications, these fail to cover hydrogen-specific safety or technologies.

The rising demand from major hydrogen projects, such as HyIron and Cleanergy, underscores an urgent need for local technicians, with reliance on OEMs for maintenance deemed unsustainable while retarding local empowerment. Furthermore, there are no regional training providers offering structured electrolyser training.

European certification standards like TÜV SÜD and DVGW could serve as helpful benchmarks. A dual training model, that combines classroom learning with hands-on industrial training—commonly practiced in Germany—is highly regarded and particularly suitable for Namibia's context

Key Recommendations

Key recommendations focus on establishing a comprehensive training framework. This includes implementing eight mandatory short courses at the technician level (NQF levels 3–5) that cover fundamental and advanced topics such as hydrogen technology, electrical installation, safety, and renewable integration, aligned with international certification standards. Promoting a dual training approach involves partnerships with vocational training centres and industry players to facilitate work-based learning and enhance employment prospects.

A critical mass of future trainers for the VTCs can simultaneously emerge. Infrastructure upgrades at vocational training centres are essential, requiring investments in specialised labs, simulators, electrolyser demo units, and safety equipment. Strengthening formal industry partnerships is also critical, involving collaborations with companies like HyIron, Cleanergy, Siemens, and TÜV SÜD who can provide real-world training opportunities and ensure curriculum validation. Fast-tracking upskilling efforts at institutions like NUST and UNAM via utilising engineering graduates as trainers are recommended to build local training capacity.

Finally, we recommend the development of a national electrolyser technician qualification, through evolving the current short courses into a formal NQF Level 5 credential with clear pathways from existing vocational programs.

LITERATURE AND DOCUMENTS

- [1] S. Shefeni, "Renewable Policy and Practice: A Look at Namibia," Institute for Public Policy Research (IPPR), Windhoek, 2024.
- [2] Namibia Green Hydrogen Programme, "Green Hydrogen Projects," 2024. [Online]. Available: https://gh2namibia.com. [Accessed May 2025].
- [3] Hyphen, "The Hyphen Project," [Online]. Available: https://hyphenafrica.com/the-hyphen-project/. [Accessed 1 May 2025].
- [4] Media Centre, [Online]. Available: https://namgha.org/media. [Accessed May 2025].
- [5] The Ohlthaver and List Group and CMB.TECH launch Namibia's first green hydrogen production plant, [Online]. Available: https://www.ol.na/the-ohlthaver-list-ol-group-and-cmb-tech-launch-namibias-first-green-hydrogen-production-plant/. [Accessed 1 May 2025].
- [6] N. Q. A. (NQA), "Regulations Setting-Up the National Qualifications Framework for Namibia," Ministry of Education, Windhoek, 2006.
- [7] Namibia Training Authority, "Qualifications and Unit Standards Portal," [Online]. Available: https://unitstandards.nta.com.na. [Accessed January 2025].
- [8] M. Kurras, "Maximator Hydrogen," 19 December 2023. [Online]. Available: https://www.maximator-hydrogen.de/en/newsroom. [Accessed 25 June 2025].
- [9] U. Beyer, "Fraunhofer IWU," 14 July 2023. [Online]. Available: https://www.iwu.fraunhofer.de/en/press.

 [Accessed 25 June 2025].
- [10] BAM, "Bundesanstalt für Materialforschung und Prüfung (BAM)," 28 October 2022. [Online]. Available: https://www.bam.de/Content/EN/Press-Releases. [Accessed 25 June 2025].
- [11] S. Möhl, DECHEMA, 13 April 2023. [Online]. Available: https://dechema.de/en/About+DECHEMA/Press/. [Accessed 25 June 2025].
- [12] GIZ, "Enhancing Employability: Skills Needs and Gap Analysis in Namibia's PtX Sector and Recommendations for a Skills Development Programme," Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, Bonn and Eschborn, Germany, 2023.